Printed Page: 1 of 2 Subject Code: RCS305

DATA STRUCTURES

Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22

1. Attempt all questions in brief.

a.	Describe the terms time and space complexity.
b.	Distinguish between calloc() and malloc() function.
c.	Calculate the address of the 3 rd element of an integer array A[6][2] using the starting address 2000.(Assume integer takes 2 bytes).
d.	Write postfix notation of infix expression $a^{*}(b+c/d)$.
e.	Illustrate the data structure that follows LIFO order.
f.	Compare complete binary and strict binary trees.
g.	Write the time complexity of quicksort and bubble sorting algorithm

SECTION B

2. Attempt any *three* of the following:

a.	Consider 20 X 5 two-dimensional array "marks" which has its base address = 1000
	and the size of an element = 2. Calculate the address of the element, $marks[18][4]$
	according to row-major order and column-major order. Write the general formula for
	finding the address of the multidimensional array.
b.	Describe the term stack data structures. Illustrate the implementation of different stack
	operations with help of a program.
c.	Define the term BST. Explain different types of tree traversal techniques with help of
	an example.
d.	Write the Quicksort gorithm and illustrate the steps of the algorithm to sort the
	following data: 25, 943, 454, 75, 28, 148, 435, 566, 34.
e.	Apply prims accorthm to find the minimum cost spanning tree on the given graph.
	5 7 8
	E G

SECTION C

3. Attempt any *one* part of the following:

7 x 1 = 7

(a)	Illustrate the structure of the doubly linked list. Write an algorithm to add a new node
	at the end of the doubly-linked list.
(b)	Illustrate the structure of the circular linked list. Write an algorithm to add a new node
	at the beginning of the circular linked list.

4. Attempt any *one* part of the following:

$7 \ge 1 = 7$

(a)	Demonstrate the step-by-step conversion of the following infix expression into a
	postfix expression.
	A - (B / C + (D % E * F) / G) * H)
(b)	Compare non-tail and tail recursion. Construct the recursion tree for solving the tower
	of Hanoi problem with n=4.

Download all NOTES and PAPERS at StudentSuvidha.com

 $2 \ge 7 = 14$

 $7 \ge 3 = 21$

Total Marks: 70

PAPER ID-411705

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22

DATA STRUCTURES

5. Attempt any *one* part of the following:

(a)	Construct the binary tree using the following traversals
	In-Order Traversal : D B H E I A F J C G
	Post-Order Traversal: D H I E B J F G C A
(b)	Construct the Huffman tree using the following (node, Frequency) pairs A 7, B 9, C
	11, D 14, E 18, F 21, G 27, H 29, I 35, J 40.

6. Attempt any *one* part of the following:

7 x 1 = 7

7. Attempt any one part of the following:

7 x 1 = 7

(a)	Describe the term AVL Tree. Illustrate step-by-step construction of AVL tree using the following data. 23,45,13,56,4,6,7,32,84,89,37,96
(b)	Write a program to implement merge sort algorithm.

Download all NOTES and PAPERS at StudentSuvidha.com

 $7 \ge 1 = 7$